3,751 research outputs found

    The KINDRA project – towards Open Science in Hydrogeology for higher impact

    Get PDF
    Groundwater knowledge and research in the European Union is often scattered and non-standardised. Therefore, KINDRA is conducting an EU-wide assessment of existing groundwater-related practical and scientific knowledge based on a new Hydrogeological Research Classification System (HRC-SYS). The classification is supported by a web service, the European Inventory of Groundwater Research (EIGR), which acts not only as a knowledge repository but also as a tool to help identify relevant research topics, existing research trends and critical research challenges. These results will be useful for producing synergies, implementing policies and optimising water management in Europe. This article presents the work of the project during the first two years in relation to a common classification system and an activity for data collection and training delivered by the EFG’s National Associations in 20 European countries

    The KINDRA project. Sharing and evaluating groundwater research and knowledge in Europe

    Get PDF
    Groundwater knowledge and research in the European Union is often scattered and non-standardised, because of different subjects involved and different approaches from Member States. The Horizon2020 project KINDRA has conducted an EU-wide assessment of existing groundwater-related practical and scientific knowledge based on a new Hydrogeological Research Classification System, identifying more than 280 keywords related to three main categories (namely Operational Actions, Research topics and Societal Challenges) to be intersected in a 3D-diagram approach. The classification is supported by a web-service, the European Inventory of Groundwater Research, which acts not only as knowledge repository but also as a tool to help identify relevant researchm topics, existing research trends and critical research challenges. The records have been uploaded during the project by 20 national experts from National Associations of Geologists, under the umbrella of the European Federation of Geologists. The total number of metadata included in the inventory at the end of the project are about 2300, and the analysis of the results is considered useful for producing synergies, implementing policies and optimising water management in Europe. By the use of additional indicators, the database content has been analysed by occurrence of keywords, type of document, level of innovation. Using the three-axes classification, more easily understandable by 2D diagrams as bubble plots, occurrence and relationship of different topics (main categories) in groundwater research have been highlighted. This article summarizes the activities realized in relation to the common classification system and to the metadata included in the EIGR, showing the distribution of thecollected information in different categories and attributes identified by the classification

    The evolution of Balmer jump selected galaxies in the ALHAMBRA survey

    Full text link
    We present a new color-selection technique, based on the Bruzual & Charlot models convolved with the bands of the ALHAMBRA survey, and the redshifted position of the Balmer jump to select star-forming galaxies in the redshift range 0.5 < z < 1.5. These galaxies are dubbed Balmer jump Galaxies BJGs. We apply the iSEDfit Bayesian approach to fit each detailed SED and determine star-formation rate (SFR), stellar mass, age and absolute magnitudes. The mass of the haloes where these samples reside are found via a clustering analysis. Five volume-limited BJG sub-samples with different mean redshifts are found to reside in haloes of median masses ∼1012.5±0.2M⊙\sim 10^{12.5 \pm 0.2} M_\odot slightly increasing toward z=0.5. This increment is similar to numerical simulations results which suggests that we are tracing the evolution of an evolving population of haloes as they grow to reach a mass of ∼1012.7±0.1M⊙\sim 10^{12.7 \pm 0.1} M_\odot at z=0.5. The likely progenitors of our samples at z∼\sim3 are Lyman Break Galaxies, which at z∼\sim2 would evolve into star-forming BzK galaxies, and their descendants in the local Universe are elliptical galaxies.Hence, this allows us to follow the putative evolution of the SFR, stellar mass and age of these galaxies. From z∼\sim1.0 to z∼\sim0.5, the stellar mass of the volume limited BJG samples nearly does not change with redshift, suggesting that major mergers play a minor role on the evolution of these galaxies. The SFR evolution accounts for the small variations of stellar mass, suggesting that star formation and possible minor mergers are the main channels of mass assembly.Comment: 14 pages, 10 figures. Submitted to A&A. It includes first referee's comments. Abstract abridged due to arXiv requirement

    Al2O3 microring resonators for the detectin of a cancer biomarker in undiluted urine

    Get PDF
    : Concentrations down to 3 nM of the rhS100A4 protein, associated with human tumor development, have been detected in undiluted urine using an integrated sensor based on microring resonators in the emerging Al2O3 photonic platform. The fabricated microrings were designed for operation in the C-band (λ = 1565 nm) and exhibited a high-quality factor in air of 3.2 × 105. The bulk refractive index sensitivity of the devices was ~100 nm/RIU (for TM polarization) with a limit of detection of ~10−6 RIU. A surface functionalization protocol was developed to allow for the selective binding of the monoclonal antibodies designed to capture the target biomarker to the surface of the Al2O3 microrings. The detection of rhS100A4 proteins at clinically relevant concentrations in urine is a big milestone towards the use of biosensors for the screening and early diagnosis of different cancers. Biosensors based on this microring technology can lead to portable, multiplexed and easy-to-use point of care device

    C.elegans as a Diabetes & Ischemia Model: Identification of Genetic and Cellular Changes that Modulate the Survival of Hyperglycemia and Oxygen-Deprivation

    Get PDF
    Diet represents an exogenous influence that often yields colossal effects on an individual’s phenotype, physiology, long-term health and disease risk. The overconsumption of dietary sugars for example, has contributed to significant increases in obesity and type 2 diabetes, health issues that are costly both in terms of dollars and human life. Additionally, individuals with these conditions have compromised oxygen delivery and thus, an increased vulnerability to other oxygen-deprivation related disease states, including cardiovascular disease, ischemic strokes, vascular and coronary diseases and myocardial infarction. While human and other mammalian studies have shown that individuals with type 2 diabetes have a worse prognosis and recovery after being challenged with an oxygen-deprivation related injury, mechanistic understanding regarding why this is the case is lacking. We are using C. elegans to identify genetic and cellular changes that modulate responses to the combinatory stress of hyperglycemia and oxygen-deprivation. We have determined that C. elegans fed a high glucose diet have increased cellular glucose (hyperglycemia), increased lipid content and increased sensitivity to oxygen-deprivation (anoxia) and ROS induction. We have determined that the insulin-like signaling pathway, via fatty acid and ceramide synthesis, modulates the increased sensitivity to anoxia. In mammalian systems, specific ceramide species increase after an ischemic event and are also linked to detrimental effects observed in diabetic patients, underscoring the potential role these molecules have in modulating oxygen-deprivation and hyperglycemia responses in individuals. Specific fatty acids also have known roles as both signaling molecules and as integral membrane components, thus, we hypothesize that a high-glucose diet disrupts fatty acid and ceramide homeostasis resulting in aberrations in metabolic processes and stress response pathways that are essential for the survival of oxygen-deprivation. Additionally, gene expression analysis (via RNAseq) on C. elegans fed either a standard or glucose-supplemented diet revealed that glucose impacts the expression of genes involved with multiple cellular processes, including lipid and carbohydrate metabolism, stress responses, cell division and extracellular functions. Several of the genes we identified are also differentially regulated in obese and type-2 diabetic human individuals, indicating a high degree of conserved gene expression changes between C. elegans fed a glucose-supplemented diet and in diabetic and/or obese human individuals. Together this work underscores how both diet and genotype impact stress responses and supports the use of C. elegans as a model for further elucidating the molecular mechanisms regulating dietary-induced metabolic diseases
    • …
    corecore